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Abstract

Autonomous underwater vehicles, or AUVs have a growing number of applications in

today's world. One such application is assisting divers to aid with difficult or risky underwater

tasks. In this setting, communication between the robot and human diver is of utmost

importance. However, due to the restrictions of the underwater environment, divers must largely

depend on non verbal communication. Pointing gestures are a natural choice as they are both

intuitive and effective in conveying direction. The success of an underwater expedition relies on

an AUV's ability to distinguish various pointing gestures. This motivates the objective to find a

model which can be utilized for underwater pointing gesture classification tasks with high

accuracy. Based on their success in related terrestrial gesture classification projects, four

machine learning models (UNET, PSPNet, DeepLabV3 and Mask R-CNN) were analyzed. They

were trained on various pointing gestures including go here, pick up, general point, and take a

picture. Finally, they were evaluated on their ability to classify these pointing gestures. This

project presents an evaluation of UNET, PSPNet, DeepLabV3 and Mask R-CNN for the task of

classifying underwater pointing gestures.
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1. Introduction

Autonomous vehicles have been on the rise within society. Applications such as

self-driving cars, vacuums, drones and rockets are being integrated into daily life. They are

often capable of autonomously carrying out tasks that are traditionally time, energy, or resource

consuming- bringing both convenience and productivity to users. Some applications, such as

self-driving cars, support human users through intelligent assistance- which can reduce human

error. More recently, underwater robotics, and more specifically, autonomous underwater

vehicles (AUV's) have gained significant attention for various applications such as underwater

exploration, monitoring, and even environmental clean up [1]–[3]. These robots can operate in

challenging environments where human intervention is either impractical or dangerous. An AUV

assistant can make these expeditions safer and more efficient. However, AUVs face a unique

set of challenges due to the unknown and dynamic environment that they primarily operate in.

These vehicles must be able to adapt to high pressure and low visibility environments. As a

result, communication between the AUV and human diver, one of the most crucial aspects of a

successful expedition, becomes increasingly difficult. In order for this communication to be

successful, the AUV must be able to recognize when a diver is attempting to communicate,

understand the diver's objectives, and respond appropriately. In terms of robot to human

communication, text displays, LED patterns, and sound are amongst the strategies currently

being explored [4]. For humans to relay information effectively to their AUV aids, gestural

communication has been emerging as a strong and reliable means of communication.

This approach involves two main components: detecting human hand pointing gestures

using sensors and interpreting them to control the robot. The first part of this revolves upon

accurate pointing gesture detection using computer vision techniques to recognize a hand

forming a pointing gesture. The second can be achieved using machine learning algorithms,

such as neural networks to train the system to recognize what command the pointing gesture is

https://www.zotero.org/google-docs/?U0GBRf
https://www.zotero.org/google-docs/?lIytPX
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associated with. In this way, the AUV and human diver can communicate with each other in an

intuitive and effective manner. Previous research has explored various machine learning

techniques for terrestrial gesture classification, but underwater pointing gesture classification

has not been explored much at all.

Pointing gestures are incredibly pertinent to nonverbal communication. They

communicate direction and offer another layer of clarification to commands. In collaborative

settings, pointing gestures are often used to intuitively direct attention to an object, area, or

person. This translates to underwater human to robot communication as well. Underwater

pointing gestures can be used to communicate the intent to travel to an area, pick up an object,

take a picture of an item, or follow a specific route [5]. AUVs must be able to recognize and

understand various pointing gestures to be able to adequately assist the human divers. Thus, it

is important to find an algorithm that is capable of classifying various underwater pointing

gestures accurately. Within this paper, various machine learning models will be evaluated in

order to optimize underwater pointing gesture classification.

(a) (b)

Figure 1. Demonstration of underwater pointing gestures for human-robot communication with the LoCO

AUV [6]

https://www.zotero.org/google-docs/?9bHfAD
https://www.zotero.org/google-docs/?O9C0bp
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2. Background

2.1. Terrestrial Applications

Several studies have investigated the use of hand gestures in human-computer

interaction. Hand gestures as a means of communication have been shown to be extremely

effective due to their intuitive nature. They allow the communicator to quickly convey tasks in

environments where verbal communication is challenging. In terrestrial applications, various

machine learning algorithms have been explored to efficiently detect and classify gestures.

These algorithms have been used in a wide range of fields and applications.

For example, one of the most common gesture based communication is sign language.

Researchers have developed technological translators to ease the communication gap between

those who are and are not fluent in sign languages. The majority of these rely on gesture

recognition. Many proposed methods use Convolutional Neural Networks (CNN's) to extract

specific gestures from images [7]. Moreover, in a comparative review between the

Convolutional Neural Network and Support Vector Machine approaches, CNN models yielded a

higher accuracy in recognizing specific ASL gestures [8].

Another application of hand gesture recognition is interactive gaming. This field pushes

the boundaries of entertainment by allowing the user to control gameplay without hardware.

Rather, various machine learning and computer vision techniques are employed to detect and

interpret hand gestures in place of traditional hardware controls [9]. In one implementation, first

the hand region is extracted from the image using skin color. The model, YCbCr, segments the

image as per skin color to retrieve just the hand. Then, specific hand gestures are identified by

computing the angles between detected fingers in the input image. An advantage of this

approach is that there is no need for training samples unlike many other machine learning

approaches [10]. This method works well when categorizing gestures into open hand versus

https://www.zotero.org/google-docs/?6QJ1Y8
https://www.zotero.org/google-docs/?RfEBZf
https://www.zotero.org/google-docs/?AMNKhF
https://www.zotero.org/google-docs/?KgUyXv
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closed hand, and the results of this paper show high accuracy in interactive game play

applications.

Finally, both of the previous applications employ computer vision based approaches to

detect the hand gestures. However, there are many hand gesture recognition algorithms which

utilize sensors to detect these gestures. One paper explores 'data gloves', a simple alternative

to vision based hand detection. In this approach, inertial sensors on the glove track finger

placements. Then, a neural network is used with this data in order to map various placements to

different hand gesture meanings [11].

2.2. Machine Learning Models

There are various machine learning models designed to perform these tasks. These

algorithms train on a labeled dataset of images to complete image processing tasks such as

classification, object detection, semantic segmentation, and instance segmentation.

Classification is the task of assigning a specific category or label to a given image. Detection

refers to identifying a bounding box for each object. Semantic segmentation is the process of

assigning an object label to each pixel in an image, and instance segmentation builds upon this

to additionally differentiate between various instances of the same object. In terms of gesture

classification, semantic segmentation is a popular choice due to its powerful ability to distinguish

between specific hand positions.

There is research supporting many different machine learning algorithms capable of

semantic segmentation. Most of these build upon convolutional neural networks- or CNN's.

Though CNNs are useful in image classification and processing tasks, their output is often a

single label which classifies the input image. However, semantic segmentation tasks additionally

require the bounds of each object within the image to be identified. Moreover, CNNs require a

large amount of training data, which is impractical in various different fields [12]. In the case of

https://www.zotero.org/google-docs/?LLx615
https://www.zotero.org/google-docs/?f7L6Ii
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input images consisting of multiple objects, a different method will need to be employed. Region

based CNN, or R-CNN, was designed to address this. In this algorithm, object regions are

identified and then passed into a convolutional neural network. This method supports the

prediction of labels and bounding boxes for multiple objects in a single image [13]. However,

since it requires the use of CNNs, it quickly becomes inefficient with complex inputs. As a result,

Fast R-CNN and Faster R-CNN were proposed to improve the efficiency through the use of

feature maps and a single CNN. Faster R-CNN uses an RPN- or region proposal network- to

output a bounding box and its classification label for each object in an input image [12].

One common algorithm for image processing tasks that builds upon this is Mask

R-CNN. This was initially proposed for instance segmentation tasks. Mask R-CNN extends

Faster R-CNN by optimizing this algorithm for semantic segmentation. It introduces pixel-pixel

alignment and adds an object mask to the existing Faster R-CNN algorithm output. In this way, it

is able to efficiently predict masks, labels, and bounding boxes for objects [14]. Another such

algorithm that accomplishes semantic segmentation is UNet, originally developed for medical

applications. UNet has a "U-shaped" architecture and works by utilizing feature mapping to build

a segmented image output. This algorithm also utilizes data augmentation to provide strong

results with smaller data sets [15]. Next, PSPNet, or the Pyramid Scheme Parsing Network, also

builds upon this idea by providing a solution for scene parsing. Similarly to UNet, this network

also employs the feature map extracted with a CNN. Then, it applies the pyramid pooling

module to extract deeper contextual features from sub-regions which aids to produce the final

output [16]. Finally, DeepLab is a family of deep learning models for semantic image

segmentation. Each version incorporates new techniques to enhance the model performance.

DeepLabV3 is a version of this model, and it applies dilated convolution and atrous convolution

to efficiently extract multi-scale contextual information in input images. This technique is

especially useful for semantic segmentation tasks, where objects can vary significantly in size

and shape [17].

https://www.zotero.org/google-docs/?U8wvbR
https://www.zotero.org/google-docs/?frBtz9
https://www.zotero.org/google-docs/?0tUYXu
https://www.zotero.org/google-docs/?H9rco1
https://www.zotero.org/google-docs/?wgJXDX
https://www.zotero.org/google-docs/?sYe9eT
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When designing models to carry out these segmentation tasks, it is also important to

take pre-training into consideration. Pre-training and transfer learning are methods employed in

machine learning to improve model performance. They are especially valuable when there is a

smaller amount of labeled data. Pre-training consists of training a model on a large set of data

to learn the general features of the data. After pre-training, the model is fine-tuned on a smaller

dataset with labeled examples for a specific task. Transfer learning, on the other hand, entails

adapting a pre-trained model for a different task by using it as a starting point and then training it

further on a smaller task-specific dataset. Both pre-training and transfer learning can improve

the accuracy of machine learning models and save computational resources and time,

especially when labeled data is limited [18]. One such model that is commonly used in image

processing tasks is ResNet, or Residual Network [19]. ResNet is a deep neural network which

uses residual connections to enable training on deeper neural networks with improved accuracy.

This network has been trained on ImageNet, a large dataset of labeled images. However, the

need to utilize pre-training for strong results has been questioned by recent studies. Specifically,

it has been shown that in object detection and image segmentation tasks, a Mask R-CNN model

initialized randomly yields similar results as when initialized based on ImageNet pre-training

[20]. Although the accuracy of results may not be vastly impacted, another study explored

model robustness and uncertainty- finding that both of these were improved with pre-training

[21].

From existing studies on terrestrial hand gesture classification tasks, UNET, PSPNet,

DeepLabV3 and Mask R-CNN have emerged as the strongest models for such tasks [22]–[24].

Thus, they were chosen to be evaluated for the underwater pointing gesture classification in this

project.

https://www.zotero.org/google-docs/?83meKW
https://www.zotero.org/google-docs/?Vp37Lt
https://www.zotero.org/google-docs/?NB1uLn
https://www.zotero.org/google-docs/?vkpwUt
https://www.zotero.org/google-docs/?sSsLim
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3. Objective

In this thesis, four machine learning models will be compared, namely UNET, PSPNet,

DeepLabV3 and Mask R-CNN for pointing gesture classification. The overall objective is to

identify a model which can be utilized for underwater pointing gesture communication tasks with

high accuracy. Results with and without pretraining on ImageNet will be compared and analyzed

using various evaluation methods. The results of this study will provide valuable insights into the

effectiveness of these models for this underwater application and will further the exploration of

underwater human-robot communication systems.
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4. Approach

4.1. Dataset

To evaluate and compare models for underwater pointing gesture classification,

underwater data were collected to compile a dataset of labeled images. Volunteers were

recorded performing four right-handed gestures, as outlined in figure 1, at different angles to the

camera in an indoor swimming pool. These images were then manually parsed into frames and

annotated with a pointing gesture mask and class label to form a dataset of 3498 images (figure

2). This data was used in the next steps of the evaluation process.

Figure 1. The four types of pointing gestures in the study include: a) go somewhere, b) pick up, c) take a

picture, d) general point
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Go Here General Point Pick Up Take Picture

Forward Go Here Forward General Point Forward Pick Up Forward Take Picture

Figure 2. Sample images and labeled masks from each of the classes of the dataset used in this project

These images were then split into training, validation, and test sets in a 75% - 10% -

15% split. Each model was trained on set hyperparameters for a fair comparison on model
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strength. Four of these corresponded to the four different pointing gestures and the remaining

four were the classes for forward pointing gestures. Since these forward pointing gestures were

captured at a straight forward angle to the camera, only the fingertips of the pointing gesture

were visible in most cases. Thus, manually drawing forward pointing gesture masks were

difficult and their ground truth masks were significantly different from other masks for the same

pointing gesture, as shown in figure 2. Moreover, the forward go there and forward take picture

pointing gesture masks look fairly similar (figure 3). Therefore, to improve results, forward

pointing gestures were labeled in separate classes.

Forward Take Picture

Gesture

Forward Go Here

Gesture

Figure 3. Forward go here and Forward take picture pointing gesture masks

4.2. Training

Each of the four models was run on 200 epochs with and without pretraining on ImageNet with

an initial learning rate of 10-5. A scheduler was also used to decrease the learning rate when the

model stopped improving. As demonstrated in figure 4, the accuracy shows no significant

improvement around 200 epochs and the validation loss plateaus around 100 epochs. Dice loss

was used to validate the model. This loss function is region based and functions by calculating

the similarity in predicted and expected mask regions [25]. During training, the best model was

saved for evaluation.

https://www.zotero.org/google-docs/?NVrSDv
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Upon successful completion of the training stage, an evaluation script was run on each

of the pretrained and non-pretrained models with the validation images. Various evaluation

benchmarks including: dice similarity coefficient, intersection-over-union (IOU), and average

precision (AP) score were computed on the models.

Training Loss vs Epochs

Dice Score vs Epochs

Figure 4. This illustrates the relationship between epochs, loss, and accuracy during the training of the models being

evaluated.
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5. Results

5.1. Evaluation Methods

The performance of the models were evaluated based on dice similarity coefficient,

intersection-over-union (IOU), and average precision (AP) score. The dice coefficient and IOU

measures indicate similarity between predicted and ground truth masks, while the AP score

reflects the accuracy of predictions based on precision and recall values. The dice coefficient is

calculated using the overlap area between the predicted and ground truth masks and the total

number of pixels between the masks. The IOU is calculated using the overlap and union of the

predicted and ground truth masks. Finally, the AP score is calculated by computing the area

under the precision-recall curve. The computations for the three evaluation values are as follows

and visualized in figure 5:

, where A and B represent the prediction and ground truth respectively𝐼𝑂𝑈 =   𝐴 ∩ 𝐵 | |
  𝐴∪ 𝐵 | |  

Dice coefficient = 2 * (Precision * Recall) / (Precision + Recall)

AP = , n = thresholds
𝑘 = 0

𝑛−1

∫ 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑠 (𝑘) * [𝑟𝑒𝑐𝑎𝑙𝑙𝑠(𝑘) − 𝑟𝑒𝑐𝑎𝑙𝑙𝑠(𝑘 + 1)]

Intersection over Union Dice Coefficient Average Precision Score

Figure 5. This visually illustrates the calculations of IOU, Dice Coefficient and AP score. Image source: Wikimedia
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5.2. Quantitative and Qualitative Analysis

The quantitative results are outlined in table 1. The table compares the dice coefficient,

IOU, and AP scores for the semantic segmentation predictions of each model. It shows the

scores from the Mask R-CNN, DeepLabV3, UNET, and PSPNet models with and without

pretraining.

Model

Intersection over

Union (IOU)

Dice Coefficient Mean Average

Precision (mAP)

Mask R-CNN – .929 0.921

UNET 0.9981 0.9269 0.9422

PSPNet 0.9978 0.9756 0.9429

DeepLabV3 0.9985 0.9717 0.9859

Mask R-CNN – .805 0.809

UNET 0.9982 0.9319 0.9431

PSPNet 0.9984 0.9814 0.9622

DeepLabV3 .9984 0.9852 0.9708

Table 1. The quantitative results are outlined. The intersection over union, dice coefficient, and mean

average precision evaluation metrics are shown.
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The results suggest that the DeepLabV3 model with pre-training performs slightly better

than the other 3 models for the underwater pointing gesture semantic segmentation task. This

model showed the highest IOU and Mean Average Precision scores. However, the DeepLabV3

model without pre-training performs the second best, with only a slightly lower Mean Average

Precision score. As the results demonstrate, there isn't a significant quantitative improvement in

pretraining the UNET, PSPNet, or DeepLabV3 models. These results align with the findings in

[19], that pretrained models may not always perform better than their counterparts. This could

be due to significant differences between the model pre-training dataset, imagenet in this case,

and the current dataset. On the other hand, the metrics suggest that the Mask R-CNN model

performs better with pre-training, as reflected in the higher dice coefficient and mean average

precision evaluation metrics. The qualitative results presented in table 2 and table 3 also

provide visual insight into the performance of these models.

https://www.zotero.org/google-docs/?broken=wEA9Yj
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Input

Ground Truth

Mask R-CNN

UNET

PSPNet

DeepLabV3

Mask R-CNN

UNET

PSPNet

DeepLabV3

Table 2. This shows the predictions of each model on an input image from various classes along with the ground

truth mask.
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Input

Ground Truth

Mask R-CNN

UNET

PSPNet

DeepLabV3

Mask R-CNN

UNET

PSPNet

DeepLabV3

Table 3. This shows the predictions of each model on an input image from each of the forward facing pointing gesture

classes along with the ground truth mask.
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The qualitative comparisons align with the quantitative ones. From table 2, it appears

that there is no significant difference in mask predictions between pretrained models and their

counterparts. Each mask color corresponds to a specific class, and tables 2 and 3 confirm that

all of the models are able to correctly categorize each pointing gesture into its respective class.

However, a visual comparison between tables 2 and 3 suggest that all of the models, with the

exception of Mask R-CNN perform significantly better when tasked with predicting a pointing

gesture mask at an indirect angle. As shown in table 3, the prediction masks belonging to the

forward facing pointing gesture classes appear to vary significantly more than the ground truth.

Given the visual results, Mask R-CNN seems to perform significantly better than the other

models when predicting forward facing pointing gestures. Additionally, the pretrained PSPNet

model and UNET model without pretraining both failed to predict the forward general point

gesture. Overall, the qualitative and quantitative results suggest there is no overall significant

performance difference between the models, but forward facing pointing gestures are better

predicted by the Mask R-CNN models.
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6. Conclusion

6.1. Summary

From the quantitative and qualitative results produced by the various models, DeepLabV3

model with pre-training emerged as the strongest model in terms of the intersection over union,

dice coefficient, and average precision evaluation metrics. This model had an IOU score of

0.9985, a dice coefficient score of 0.9717, and an mAP score of 0.9859. Though all the models

were able to correctly categorize the pointing gestures into their respective classes, the

pretrained PSPNet model and UNET model without pre-training both failed to predict masks for

the forward facing general pointing gesture. This, along with the quality of the other prediction

masks, suggests that all the models perform better on predicting masks for non forward facing

pointing gestures. However, given a forward facing pointing gesture input, the Mask R-CNN

models perform the strongest.

6.2. Future Work

To expand upon the findings in this evaluation, a larger dataset should be trained

including images from field settings. Since the dataset used in the evaluations within this paper

consisted of lab data, the models may behave unexpectedly when given images with more

diverse backgrounds, marine life, or debris. Future work would involve testing lab trained

models on their ability to predict masks for field data. Finding a model that is able to generalize

well to this new setting would be extremely beneficial in future underwater pointing gesture

classification tasks. Another area of exploration is introducing augments within the training data.

This would diversify the training data, and possibly improve the quality of mask predictions.

Evaluating the performance of models trained on a set with augmentation would be another step

in finding a stronger model for this task. Finally, exploring different model pre-training datasets
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would offer more insight into the results of this project. Understanding why various models

perform similarly with and without pre-training can be useful in better fine tuning models for the

underwater pointing gesture classification task.

7. Bibliography

[1] M. Fulton, J. Hong, M. J. Islam, and J. Sattar, “Robotic Detection of Marine Litter Using

Deep Visual Detection Models.” arXiv, Sep. 21, 2018. Accessed: Mar. 28, 2023. [Online].

Available: http://arxiv.org/abs/1804.01079

[2] B. Martinez et al., “Technology innovation: advancing capacities for the early detection of

and rapid response to invasive species,” Biol. Invasions, vol. 22, no. 1, pp. 75–100, Jan.

2020, doi: 10.1007/s10530-019-02146-y.

[3] A. G. Chavez, C. A. Mueller, T. Doernbach, D. Chiarella, and A. Birk, “Robust

Gesture-Based Communication for Underwater Human-Robot Interaction in the context of

Search and Rescue Diver Missions,” J. Mar. Sci. Eng., vol. 7, no. 1, p. 16, Jan. 2019, doi:

10.3390/jmse7010016.

[4] M. Fulton, C. Edge, and J. Sattar, “Robot Communication Via Motion: A Study on

Modalities for Robot-to-Human Communication in the Field,” ACM Trans. Hum.-Robot

Interact., vol. 11, no. 2, pp. 1–40, Jun. 2022, doi: 10.1145/3495245.

[5] A. M. Walker, “Towards Natural Underwater Human-Robot Interaction: Pointing Gesture

Recognition for Autonomous Underwater Vehicles,” May 2021, Accessed: Mar. 28, 2023.

[Online]. Available: http://conservancy.umn.edu/handle/11299/225596

[6] C. Edge et al., “Design and Experiments with LoCO AUV: A Low Cost Open-Source

Autonomous Underwater Vehicle.” arXiv, Mar. 19, 2020. Accessed: Apr. 06, 2023. [Online].

Available: http://arxiv.org/abs/2003.09041

[7] S. Chavan, X. Yu, and J. Saniie, “Convolutional Neural Network Hand Gesture Recognition

https://www.zotero.org/google-docs/?h3H9QE
https://www.zotero.org/google-docs/?h3H9QE
https://www.zotero.org/google-docs/?h3H9QE
https://www.zotero.org/google-docs/?h3H9QE
https://www.zotero.org/google-docs/?h3H9QE
https://www.zotero.org/google-docs/?h3H9QE
https://www.zotero.org/google-docs/?h3H9QE
https://www.zotero.org/google-docs/?h3H9QE
https://www.zotero.org/google-docs/?h3H9QE
https://www.zotero.org/google-docs/?h3H9QE
https://www.zotero.org/google-docs/?h3H9QE
https://www.zotero.org/google-docs/?h3H9QE
https://www.zotero.org/google-docs/?h3H9QE
https://www.zotero.org/google-docs/?h3H9QE
https://www.zotero.org/google-docs/?h3H9QE
https://www.zotero.org/google-docs/?h3H9QE
https://www.zotero.org/google-docs/?h3H9QE
https://www.zotero.org/google-docs/?h3H9QE
https://www.zotero.org/google-docs/?h3H9QE
https://www.zotero.org/google-docs/?h3H9QE


24

for American Sign Language,” in 2021 IEEE International Conference on Electro

Information Technology (EIT), Mt. Pleasant, MI, USA: IEEE, May 2021, pp. 188–192. doi:

10.1109/EIT51626.2021.9491897.

[8] V. Jain, A. Jain, A. Chauhan, S. S. Kotla, and A. Gautam, “American Sign Language

recognition using Support Vector Machine and Convolutional Neural Network,” Int. J. Inf.

Technol., vol. 13, no. 3, pp. 1193–1200, Jun. 2021, doi: 10.1007/s41870-021-00617-x.

[9] L. Zulpukharkyzy Zholshiyeva, T. Kokenovna Zhukabayeva, S. Turaev, M. Aimambetovna

Berdiyeva, and D. Tokhtasynovna Jambulova, “Hand Gesture Recognition Methods and

Applications: A Literature Survey,” in The 7th International Conference on Engineering &

MIS 2021, Almaty Kazakhstan: ACM, Oct. 2021, pp. 1–8. doi: 10.1145/3492547.3492578.

[10] K. Li, J. Cheng, Q. Zhang, and J. Liu, “Hand Gesture Tracking and Recognition based

Human-Computer Interaction System and Its Applications,” in 2018 IEEE International

Conference on Information and Automation (ICIA), Aug. 2018, pp. 667–672. doi:

10.1109/ICInfA.2018.8812508.

[11] H. Min, C. Chen, S. Huang, X. Tian, Y. Yang, and Z. Wang, “Highly-accurate gesture

recognition based on ResNet with low-budget data gloves,” in 2021 3rd International

Conference on Advanced Information Science and System (AISS 2021), Sanya China:

ACM, Nov. 2021, pp. 1–6. doi: 10.1145/3503047.3503153.

[12] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards Real-Time Object

Detection with Region Proposal Networks.” arXiv, Jan. 06, 2016. Accessed: Mar. 13, 2023.

[Online]. Available: http://arxiv.org/abs/1506.01497

[13] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature hierarchies for accurate

object detection and semantic segmentation.” arXiv, Oct. 22, 2014. Accessed: Mar. 06,

2023. [Online]. Available: http://arxiv.org/abs/1311.2524

[14] K. He, G. Gkioxari, P. Dollár, and R. Girshick, “Mask R-CNN.” arXiv, Jan. 24, 2018.

Accessed: Mar. 13, 2023. [Online]. Available: http://arxiv.org/abs/1703.06870

https://www.zotero.org/google-docs/?h3H9QE
https://www.zotero.org/google-docs/?h3H9QE
https://www.zotero.org/google-docs/?h3H9QE
https://www.zotero.org/google-docs/?h3H9QE
https://www.zotero.org/google-docs/?h3H9QE
https://www.zotero.org/google-docs/?h3H9QE
https://www.zotero.org/google-docs/?h3H9QE
https://www.zotero.org/google-docs/?h3H9QE
https://www.zotero.org/google-docs/?h3H9QE
https://www.zotero.org/google-docs/?h3H9QE
https://www.zotero.org/google-docs/?h3H9QE
https://www.zotero.org/google-docs/?h3H9QE
https://www.zotero.org/google-docs/?h3H9QE
https://www.zotero.org/google-docs/?h3H9QE
https://www.zotero.org/google-docs/?h3H9QE
https://www.zotero.org/google-docs/?h3H9QE
https://www.zotero.org/google-docs/?h3H9QE
https://www.zotero.org/google-docs/?h3H9QE
https://www.zotero.org/google-docs/?h3H9QE
https://www.zotero.org/google-docs/?h3H9QE
https://www.zotero.org/google-docs/?h3H9QE
https://www.zotero.org/google-docs/?h3H9QE
https://www.zotero.org/google-docs/?h3H9QE
https://www.zotero.org/google-docs/?h3H9QE
https://www.zotero.org/google-docs/?h3H9QE
https://www.zotero.org/google-docs/?h3H9QE


25

[15] O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolutional Networks for Biomedical

Image Segmentation.” arXiv, May 18, 2015. doi: 10.48550/arXiv.1505.04597.

[16] H. Zhao, J. Shi, X. Qi, X. Wang, and J. Jia, “Pyramid Scene Parsing Network.” arXiv, Apr.

27, 2017. Accessed: Mar. 06, 2023. [Online]. Available: http://arxiv.org/abs/1612.01105

[17] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille, “DeepLab: Semantic

Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully

Connected CRFs.” arXiv, May 11, 2017. Accessed: Mar. 13, 2023. [Online]. Available:

http://arxiv.org/abs/1606.00915

[18] Avinash, “Pre-Trained Machine Learning Models vs Models Trained from Scratch,”

Medium, Sep. 23, 2021.

https://heartbeat.comet.ml/pre-trained-machine-learning-models-vs-models-trained-from-sc

ratch-63e079ed648f (accessed Mar. 14, 2023).

[19] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for Image Recognition.”

arXiv, Dec. 10, 2015. Accessed: Mar. 14, 2023. [Online]. Available:

http://arxiv.org/abs/1512.03385

[20] K. He, R. Girshick, and P. Dollár, “Rethinking ImageNet Pre-training.” arXiv, Nov. 21, 2018.

Accessed: Mar. 14, 2023. [Online]. Available: http://arxiv.org/abs/1811.08883

[21] D. Hendrycks, K. Lee, and M. Mazeika, “Using Pre-Training Can Improve Model

Robustness and Uncertainty,” in Proceedings of the 36th International Conference on

Machine Learning, PMLR, May 2019, pp. 2712–2721. Accessed: Mar. 14, 2023. [Online].

Available: https://proceedings.mlr.press/v97/hendrycks19a.html

[22] “Smart training: Mask R-CNN oriented approach | Elsevier Enhanced Reader.”

https://reader.elsevier.com/reader/sd/pii/S0957417421009957?token=A5CDF8BD7301919

A2E3F867906ADC24D91BBCF761E7BBA911E7711F6FE8F6773BD4CB5D59E4230FF5

EE9C3AC9F3CC9FE&originRegion=us-east-1&originCreation=20230328222625

(accessed Mar. 28, 2023).

https://www.zotero.org/google-docs/?h3H9QE
https://www.zotero.org/google-docs/?h3H9QE
https://www.zotero.org/google-docs/?h3H9QE
https://www.zotero.org/google-docs/?h3H9QE
https://www.zotero.org/google-docs/?h3H9QE
https://www.zotero.org/google-docs/?h3H9QE
https://www.zotero.org/google-docs/?h3H9QE
https://www.zotero.org/google-docs/?h3H9QE
https://www.zotero.org/google-docs/?h3H9QE
https://www.zotero.org/google-docs/?h3H9QE
https://www.zotero.org/google-docs/?h3H9QE
https://www.zotero.org/google-docs/?h3H9QE
https://www.zotero.org/google-docs/?h3H9QE
https://www.zotero.org/google-docs/?h3H9QE
https://www.zotero.org/google-docs/?h3H9QE
https://www.zotero.org/google-docs/?h3H9QE
https://www.zotero.org/google-docs/?h3H9QE
https://www.zotero.org/google-docs/?h3H9QE
https://www.zotero.org/google-docs/?h3H9QE
https://www.zotero.org/google-docs/?h3H9QE
https://www.zotero.org/google-docs/?h3H9QE
https://www.zotero.org/google-docs/?h3H9QE
https://www.zotero.org/google-docs/?h3H9QE
https://www.zotero.org/google-docs/?h3H9QE
https://www.zotero.org/google-docs/?h3H9QE
https://www.zotero.org/google-docs/?h3H9QE


26

[23] T.-H. Tsai and S.-A. Huang, “Refined U-net: A new semantic technique on hand

segmentation,” Neurocomputing, vol. 495, pp. 1–10, Jul. 2022, doi:

10.1016/j.neucom.2022.04.079.

[24] A. Dadashzadeh, A. T. Targhi, M. Tahmasbi, and M. Mirmehdi, “HGR-Net: A Fusion

Network for Hand Gesture Segmentation and Recognition.” arXiv, Dec. 28, 2019.

Accessed: Mar. 28, 2023. [Online]. Available: http://arxiv.org/abs/1806.05653

[25] S. Jadon, “A survey of loss functions for semantic segmentation,” in 2020 IEEE

Conference on Computational Intelligence in Bioinformatics and Computational Biology

(CIBCB), Oct. 2020, pp. 1–7. doi: 10.1109/CIBCB48159.2020.9277638.

https://www.zotero.org/google-docs/?h3H9QE
https://www.zotero.org/google-docs/?h3H9QE
https://www.zotero.org/google-docs/?h3H9QE
https://www.zotero.org/google-docs/?h3H9QE
https://www.zotero.org/google-docs/?h3H9QE
https://www.zotero.org/google-docs/?h3H9QE
https://www.zotero.org/google-docs/?h3H9QE
https://www.zotero.org/google-docs/?h3H9QE
https://www.zotero.org/google-docs/?h3H9QE

