
Examining the Performance of Scale Optimized Visual
Odometry in Simulated Underwater Environments

Jack Perisich

Advisor: Junaed Sattar
Dept. of Computer Science and Engineering

University of Minnesota

May 2020

Scale Optimized Visual Odometry is the process of using a stereo camera to

update the scale of points found using a traditional monocular visual odom-

etry algorithm in order to achieve greater accuracy whilst not encurring the

negative performance impact associated with stereo pattern matching. This

paper examines the performance of this method on a robot in a simulated un-

derwater enviroment. While the scale optimized method gives accurate poses

in some environments, it inherits many of the shortcomings of the monocu-

lar odometry system that it is based on. Some of these shortcomings, such as

trouble maintaining accuracy in texture-depleted environments and inability

to make sharp turns without a sufficient number of surrounding objects in

all directions, are likely to be encountered when operating in underwater do-

mains. Solutions will need to be developed to handle these cases before scale

optimized visual odometry can be used robustly underwater.

1



Introduction

For many autonomous robotic systems, being able to localize the robot with respect to objects

in the surroundings is a vital part of being able to operate successfully. Many of these systems

perform this task using some form of stereo matching. While stereo matching works well for

many of these systems, it does not work so well for others. One of the major downsides of stereo

matching is its computational complexity. In many autonomous systems, it is desirable to have

the system be able to operate robustly for long periods of time. Due to the high computational

cost of stereo matching, it also has an associated high power cost, greatly reducing the time the

system can operate without being recharged [1]. Another common issue that arises with stereo

matching systems is that they tend to fail when viewing a repetitive texture. With many points

in the environment looking similar to one another, it is hard to choose which point is the best

stereo match [2]. In environments where repetitive textures are common, stereo matching will

likely have poor results.

The main alternatives to stereo matching odometry algorithms are monocular odometry al-

gorithms. These algorithms rely on a single camera and use the motion of points in the camera

frame to determine the location of the robot with respect to these points [3]. While this process

is much faster than stereo matching and incurs much less of a computational cost, it cannot fully

estimate the position of points by itself without also knowing the motion of the camera. Thus,

the depth of points and the position of the robot have to be estimated to some unknown scale.

Scale optimized visual odometry uses a stereo camera system to determine points, but does

so without stereo matching. Instead, it uses an existing monocular odometry algorithm op-

erating on one of the cameras while the other camera is used to determine the unknown scale,

thereby allowing the system to estimate both the depth of the points and the pose of the robot [1].

By avoiding stereo pattern matching, the computational cost of the algorithm is much smaller

2



than that of traditional stereo systems. It also maintains the benefit of being more robust on

repetitive textures.

For this paper, a version of scale optimized visual odometry called SO-DSO [1] was tested

on a simulated robot in underwater environments. SO-DSO uses direct sparse odometry (DSO)

[3] to perform the underlying monocular odometry. The goal of these tests was to analyze the

effectiveness and accuracy of the method overall, as well as determining the primary sources of

error and to discuss the ways in which this error could be minimized. Such an odometry algo-

rithm is appealing for underwater robots, since they may have to be deployed for long peroids

of time without recharging, and also because an underwater robot is likely to encounter repet-

itive textures with a high frequency. Most underwater environments have significant regions

where there are no unique features to make stereo matching easy, so being able to determine

pose using a repetitive texture, such as the ocean floor, is desirable. The underwater domain is

also sensor-sparse, meaning that other technologies such as GPS are not feasible. This further

increases the necessity for a robust visual odometry system.

Background

As discussed previously, many visual odometry systems rely on stereo pattern matching in

order to estimate robot pose. Stereo matching is a process that finds distinctive features in

one camera image and then tries to find the location of those same features in another image

captured by a second camera a known distance away from the first. Once the locations in both

camera frames are established, the distance between the cameras can be used to determine the

location of the point in the world coordinate system as shown in Figure 1. While this process

can be fairly accurate, it requires the testing of a single point in one camera image with many

points in the other (more specifically, all points along the epipolar line) in order to find the one

most similar. This requires a significant amount of computational power dedicated to finding

3



Figure 1: Illustration of how two points in two stereo cameras can be used to determine the
location of the point in the world coordinate space. Image sourced from [5].

matching pairs in the stereo images. It also suffers when trying to match points in environments

with repetitive textures. Since many different points in repetitive textures look similar, when

trying to find a point in one image that matches a point in the other, there will be many possible

candidates with high similarity and no obvious way to determine which one is more likely to be

the actual matching point [2]. Most stereo algorithms will also struggle with texture-depleted

environments which are common in the underwater domain. In these situations, there are no

good points for the stereo algorithm to choose which often leads to large amounts of error since

the points chosen have few identifying features [4].

In contrast to this, monocular visual odometry systems operate without the need for a sec-

ond camera. Since depth information is lost when using a single image, monocular odometry

systems require that the camera be in motion in order to estimate the locations of points in the

environment as well as the robot pose. By looking a how points move between image frames

over a period of time, an estimation can be made for location of these points in the world co-

4



Figure 2: Illustrates the process of monocular odometry. Points in the first frame (called a
‘keyframe’) are compared to the same point in a future frame (called an ‘assist frame’). The
movement of the point in the camera frame can be used to estimate the point’s location and the
change in pose of the camera up to a certain scale. Most monocular odometry algorithms will
use numerous assist frames. Illustration sourced from [8].

ordinate system [3]. This process is illustrated in Figure 2. However, all these estimations are

only accurate up to an unknown scale. The monocular vision system cannot differentiate be-

tween a small change in the camera position with nearby points, and a large change in camera

position with points that are further away. Therefore, a monocular vision system needs to be

augmented by providing it with information about the camera movement in order to determine

this unknown scale. This has primarily been tried by using an onboard inertial measurement unit

(IMU), such as in [6]. However, this makes the odometry system sensitive to noise in the IMU

which can accumulate over time to cause significant errors in the pose estimates (referred to as

“IMU drift”). Other systems have been designed that use stereo matching at certain frames to

correct this scale. While accurate, this again incurs the undesirable cost of stereo matching [7].

Scale optimized visual odometry aims to determine this unknown scale using a stereo cam-

5



Figure 3: A chart showing the flow of execution for the scale optimized method. 3D points
and the stereo image are sent to the scale optimizer which iterates until it converges on a value
for the scale. This final scale is returned to the monocular odometry algorithm. Image sourced
from [1].

era but without relying on stereo matching. The scale optimization method takes as inputs the

3D points found by the monocular odometry algorithm, the stereo image, and the initial scale.

The scale optimization method then aims to adjust the scale so that the points and pose calcu-

lated are accurate. It does this by using Gauss-Newton optimization [9] to minimize an error

function. This error function is derived by projecting the 3D points onto the stereo image and

summing the differences between the 3D points and the pixels they are projected onto. This

method is repeated until the value for the scale converges, at which point the 3D points and

pose have been determined and the optimized scale is sent back to the underlying monocular vi-

sion algorithm [1]. This process is shown in Figure 3. In practice, usually around ten iterations

are needed in order for the scale to converge. Using this method, the pose of the robot can be

found accurately with a much lower computational overhead than if stereo matching had been

used. This method has been tested extensively on the KITTI Visual Odometry dataset [10] and

the EuRoC MAV dataset [11] and shows promising results on both.

6



Results

To test the effectiveness of the scale optimized method, the current implementation of SO-DSO

was applied to a simulated robot moving through three virtual scenes using Gazebo. The robot

used in the simulation is the Aqua underwater robot [12]. The model of Aqua used in the

simulation is pictured in Figure 4. The pose estimates generated by the algorithm were then

compared to the ground truth poses to determine both the effectiveness of the algorithm, as well

as to investigate the causes of significant error.

Experiments

In the first environment, the robot was moved through a maze of traffic cones as shown in

Figure 5. While such a scenario will never actually exist underwater, this case serves as a

good baseline to indicate the conditions necessary for SO-DSO to perform with a high degree

of accuracy. The robot was directed to move from the entrance at the bottom of the maze to

the exit at the top of the maze. As can be seen by comparing the estimated poses with the

ground truth poses, the algorithm generally performed well in this scenario. While there was

significant variation at places where the robot changed directions, this is expected behavior as

the scale optimized odometry algorithm currently determines pose at the location of the primary

camera (in this case, the left camera) and ground truth poses were taken from the center of the

robot. Because of this, curvature on left turns will be diminished and curvature on right turns

will be exaggerated. While these smaller parts may differ, the overall trajectory matches with

the estimation showing the robot moving in the correct directions.

The second environment proved more challenging for SO-DSO to handle. The second en-

vironment featured a collapsed house which the robot was asked to approach and then move

along the wall until reaching the edge. After reaching the edge, the robot should attempt to turn

around the corner of the building. While a collapsed house is not likely to be found underwa-

7



(a) Front view. (b) Back view.

Figure 4: The model of Aqua used for the simulated experiments.

ter, the model was chosen as a stand-in for a more applicable object (such as a shipwreck or

underwater structure) since no textured models of these objects were available. As can be seen

in Figure 6, SO-DSO was unable to capture the full amount of the turn when approaching the

house. Because of this, the trajectory never “flattened out” as can be seen when looking at the

ground truth. SO-DSO also failed when approaching the corner of the house. It was unable to

successfully make the turn around the corner of the building, at which point it lost track of its

position and could not produce any more poses. The potential reasons for these failures will be

discussed in the next section.

The final environment tested was an apartment building (this model was also chosen as a

stand-in for a more applicable model). Similar to the collapsed house, the robot was instructed

to follow the closest wall to the edge. The algorithm performed noticably better at following

the apartment building than the collapsed house, as can be seen in Figure 7. The reasons for

this are discussed in the following section.

Evaluation

It can be seen from the three trials conducted that the ablility of SO-DSO to accurately determine

pose is heavily dependent on the environment. However, many of these limitations originate

8



Figure 5: Estimated poses (bottom left) and ground truth poses (bottom right) obtained when
directing the robot through a maze of traffic cones (top). The red line indicates the trajectory of
the robot with respect to the environment. Plots are all in the horizontal plane.

9



Figure 6: Estimated poses (middle) and ground truth poses (bottom) obtained when directing
the robot to follow along the wall of a collapsed house (top). The red line indicates the trajectory
of the robot with respect to the environment. Plots are all in the horizontal plane.

10



Figure 7: Estimated poses (middle) and ground truth poses (bottom) obtained when directing
the robot to follow along the wall of an apartment building (top). The red line indicates the
trajectory of the robot with respect to the environment. Plots are all in the horizontal plane.

11



with the underlying monocular vision algorithm. While SO-DSO aims to correct the pose of

monocular vision, it does not manage to correct the situations in which monocular vision fails

in the first place.

Circling Objects

The most noticable problem in the above trials is the difficulty of circling objects. Most monoc-

ular vision systems will fail when asked to do a turn with no translation, including DSO, on

which SO-DSO is based. Without a translation in the robot’s movement, there is no paralax in

the objects from which the monocular odometry algorithm can deduce pose, so it simply fails.

Therefore SO-DSO, which does not correct this problem, also fails in these situations, as in

Figure 6 and Figure 7.

From the first trial depicted in Figure 5, we can see that tight turns are not impossible for the

system to handle; very little translation is actually needed in certain environments. However,

when circling objects, the points of interest that monocular vision is trying to track become

more difficult to find due to the camera being mostly pointed away from the object. While this

could potentially be counteracted by moving the robot farther from the wall, thereby allowing

it to keep more of the object in the camera frame, this is not a feasible solution since all trials

showed that the estimated poses had much greater error when all the objects were far away.

Circling objects then become difficult if there are not other suitable objects surrounding it for

SO-DSO to use to maintain its tracking. This is potentially a major problem in the underwater

domain specifically, as there are very few stationary objects, so this assumption will only hold

in rare circumstances.

Texture-Depleted Environments

The other main issue is that the algorithm works significantly worse in texture depleted envi-

ronments. The traffic cones in the first trial proved especially easy to track due to their coloring;

12



the lines between contrasting colors give the underlying monocular odometry algorithm plenty

of points that are good to track. In the case of the collapsed house, the entire house is a very

dark color. This leaves fewer suitable candidate points for the underlying monocular odometry

algorithm to choose from. Therefore, since the performance of SO-DSO is heavily dependent

on the performance of this algorithm, these limitations are passed on to SO-DSO as well. This

is another problem which poses a significant challenge for working in underwater domains. The

contrast between different colors is diminished in many underwater environments, so it would

potentially be necessary to preprocess images with a color-correction algorithm (such as [13]

or [14]) before using them to compute pose.

Accuracy of Points

Another noticable issue is in the assignment of depth to the points. Going back to the maze trial,

it can be seen that the positions of the points from the robot’s perspective are much like what

is expected; the different objects in the environment can be made out by looking at the point

cloud (Figure 8). This suggests that the directions of these points from the robot are highly

accurate. However, when viewed from the top, the objects can barely be made out by looking

at the point cloud (Figure 9). Taking these two views into account, it can be concluded that

there is significant error in the depths of the points being computed. While this is seemingly not

having a large effect on the actual pose calculation, it poses another problem if future work tries

to use these points to accomplish some other task (such as checking for loop closure or trying to

recompute pose after all trackable objects have moved out of frame for a short time). A similar

observation can be made when looking at the points from the collapsed house trial (Figure 10)

and the apartment building trial (Figure 11).

13



Figure 8: Points in the traffic cone maze as seen from the robot’s prospective. The traffic cones
are easily distinguishable to the human eye, indicating very little error in the direction of the
points from the robot

Figure 9: Points in the traffic cone maze as seen from above. The traffic cones are not easily
visible to the human eye which, in conjuction with Figure 8, demonstrates significant error in
the depths of these points

14



Miscellaneous

Some smaller issues also exist that may create difficulty in certain situations. One of these is

the tendency of the monocular odometry algorithm to track points that may not be useful, such

as points on the horizon. Because of the sharp contrast in color on the horizon, it will often

be chosen as a good point for the monocular odometry algorithm to track. An example of this

happening can be seen in Figure 13. This has two negative effects. First, it adds a considerable

number of points to the point cloud that are not associated with any objects in the environment,

thereby compounding the negative effects discussed in the previous paragraph. Examples of

these points can be seen in Figure 12. Second, in areas where not many interesting points are

available, the horizon points have a significant impact on the pose calculation. This will be

another major challenge for operating in underwater environments. While a “horizon” in the

traditional sense will likely not be visible, a similar effect will likely be seen with points on the

water’s surface if the robot is operating in shallow water. Because the environment underwater

is often texture-depleted, these points will have a significant impact on the pose calculation.

Finally, we can see that SO-DSO does handle repetitive textures well. Figure 14a shows SO-

DSO tracking along the side of the apartment wall. The underlying monocular vision algorithm

is able to track using the points shown in the figure, and this does not cause large amounts

of error in the estimated trajectory. Many stereo odometry algorithms would struggle in this

scenerio as any point translated horizontally along the wall will look similar the starting point.

This means that a stereo algorithm will not be able to match points in both cameras accurately.

This same result can be seen when the algorithm is applied using datasets from the real world.

Figure 14b shows the algorithm being applied to stereo camera data from an underwater robot

moving through a shallow pool. SO-DSO is able to track the points on the pool floor despite

the texture of the pool floor being highly repetitive.

15



Figure 10: Points in the collapsed house trial as viewed from the robot (left) and from above
(right). The window of the house is visible when viewing from the robot’s perspective, but little
of the building’s structure is discernable when viewing from above.

Figure 11: Points in the apartment trial as viewed from the robot (left) and viewing the apart-
ment from the front perpendicular to the motion of the robot (right). The banister and window
in the distance are both clearly visible from the robot’s perspective, but very few features can
be seen when looking from the other perspective.

16



Figure 12: Points in the apartment trial viewed from the side. Examples of fake points generated
by the horizon have been circled in green.

Figure 13: Points on the horizon also being selected when objects are mostly out of frame.
These points are red, meaning that DSO believes they are closeby.

17



(a) Points in the apartment simulation. (b) Points on a pool floor from a real-life dataset.

Figure 14: SO-DSO is able to track points in environments with repetitive textures.

Conclusions

While SO-DSO shows promising results in many environments, there is still much improvment

that needs to be made before it can be used reliably in difficult environments, such as underwa-

ter. The algorithm heavily relies on a large availability of candidate points for the underlying

monocular odometry algorithm to track, which makes working in spare, texture-depleted en-

vironments very difficult. Other changes must also be made to increase robustness in general,

such as being able to handle rotations without any translation.

However, it should be noted that these downsides are all primarily caused by the underlying

monocular odometry algorithm. SO-DSO acts as it claims to: it provides increased accuracy

in pose estimation while not encurring the large computational penalty of stereo matching. It

does not fix the problems inherent in the underlying methodology; it merely inherits them. In

environments such as the underwater domain, it is unclear whether the added performance boost

18



is enough to justify the many problems that become exposed when working in these difficult

environments. Any future work aimed at making SO-DSO a more robust tool in these domains

should be focused on improving the underlying monocular vision. Further work is also needed

to examine the benefits and downsides of using SO-DSO over more traditional, stereo matching

methods to determine whether the added computational cost of stereo matching methods is

justifiable.

References

1. J. Mo and J. Sattar, “Extending monocular visual odometry to stereo camera systems by

scale optimization,” in Proceedings of the IEEE/RSJ International Conference on Intelli-

gent Robots and Systems (IROS), 11 2019, pp. 6921–6927.

2. G. Saygili, L. van der Maaten, and E. Hendriks, “Improving segment based stereo matching

using SURF key points,” in Proceedings of the 19th IEEE International Conference on

Image Processing, 09 2012, pp. 2973–2976.

3. J. Engel, V. Koltun, and D. Cremers, “Direct sparse odometry,” IEEE Transactions on

Pattern Analysis and Machine Intelligence, vol. 40, no. 3, pp. 611–625, 2018.

4. R. Gomez and J. Gonzlez-Jimnez, “Robust stereo visual odometry through a probabilis-

tic combination of points and line segments,” in Proceedings of the IEEE International

Conference on Robotics and Automation (ICRA), 05 2016, pp. 2521–2526.

5. S. A. S. Mohamed, M.-H. Haghbayan, T. Westerlund, J. Heikkonen, H. Tenhunen, and

J. Plosila, “A survey on odometry for autonomous navigation systems,” IEEE Access, vol. 7,

pp. 97 466–97 486, 2019.

19



6. S. Leutenegger, S. Lynen, M. Bosse, R. Siegwart, and P. Furgale, “Keyframe-based visual-

inertial odometry using nonlinear optimization,” The International Journal of Robotics Re-

search, vol. 34, no. 3, pp. 314–334, 03 2015.

7. R. Wang, M. Schworer, and D. Cremers, “Stereo DSO: Large-scale direct sparse visual

odometry with stereo cameras,” in Proceedings of the IEEE International Conference on

Computer Vision, 10 2017, pp. 3903–3911.

8. Z. Fu, Y. Quo, Z. Lin, and W. An, “FSVO: Semi-direct monocular visual odometry using

fixed maps,” in 2017 IEEE International Conference on Image Processing (ICIP), 2017,

pp. 2553–2557.

9. A. Ruszczyski, Nonlinear Optimization. Princeton University Press, 2006, vol. 13.

10. A. Geiger, P. Lenz, C. Stiller, and R. Urtasun, “Vision meets robotics: the KITTI dataset,”

The International Journal of Robotics Research, vol. 32, no. 11, pp. 1231–1237, 09 2013.

11. M. Burri, J. Nikolic, P. Gohl, T. Schneider, J. Rehder, S. Omari, M. Achtelik, and R. Sieg-

wart, “The EuRoC micro aerial vehicle datasets,” The International Journal of Robotics

Research, vol. 35, no. 10, pp. 1157–1163, 01 2016.

12. G. Dudek, P. Gigure, C. Prahacs, S. Saunderson, J. Sattar, L. A. Torres-Mndez, M. Jenkin,

A. German, A. Hogue, A. Ripsman, J. Zacher, E. Milios, H. Liu, P. Zhang, M. Buehler, and

C. Georgiades, “AQUA: An amphibious autonomous robot,” Computer, vol. 40, no. 1, pp.

46–53, 02 2007.

13. C. Fabbri, M. J. Islam, and J. Sattar, “Enhancing underwater imagery using generative

adversarial networks,” in Proceedings of the IEEE International Conference on Robotics

and Automation (ICRA), 05 2018, pp. 7159–7165.

20



14. M. J. Islam, Y. Xia, and J. Sattar, “Fast underwater image enhancement for improved visual

perception,” IEEE Robotics and Automation Letters, vol. 5, no. 2, pp. 3227–3234, 2020.

21


